gpfd.net
当前位置:首页 >> 向量叉乘怎么算 >>

向量叉乘怎么算

叉乘,也叫向量的外积、向量积.顾名思义,求下来的结果是一个向量,记这个向量为c. |向量c|=|向量a*向量b|=|a||b|sin<a,b> 向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着

会用行列式吗?给你一个公式:设a=(X1,Y1,Z1),b=(X2,Y2,Z2),a*b=(Y1Z2-Y2Z1,Z1X2-Z2X1,X1Y2-X2Y1)(1,2,3)*(4,5,6)=(12-15,12-6,5-8)=(-3,6,-3)

(a1,a2,a3)x(b1,b2,b3)=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)

两个向量a和b的叉积写作a*b =absinα (α为a,b向量之间的夹角) 向量的叉乘,即求同时垂直两个向量的向量,即c垂直于a,同时c垂直于b(a与c的夹角为90°,b与c的夹角为90°) c = a*b = (a.y*b.z-b.y*a.z , b.x*a.z-a.x*b.z , a.x*b.y-b.x*a.y)

叉乘,也叫向量的外积、向量积.顾名思义,求下来的结果是一个向量,记这个向量为c.|向量c|=|向量a*向量b|=|a||b|sin<a,b> 向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着

你好! 是这样的,严格意义上来讲,向量的叉乘都是三阶行列式.平面向量因为缺少z方向的分量(实际上应该写成(x,y,0)的形式),计算的时候为了方便就写成了二阶行列式.正规来讲,平面向量(x1,y1,0)*(x2,y2,0)应该写成如下行列式: i j k x1 y1 0 x2 y2 0 由于在计算i方向和j方向分量的时候,得到的始终都是0,所以只有k方向有分量,也符合情理.二阶形式只是简化了计算而已,不标准,正式的场合最好不要使用. 希望对你有帮助!

点乘得到的是一个数值:两个向量模的乘积再乘以它们夹角的cos 叉乘得到的是一个向量:大小是两个向量模的乘积再乘以它们夹角的sin,方向和两个向量都垂直

a X b=|a| * |b| * sinc,c是向量a和向量b的夹角

(X1,Y1)叉乘(X2,Y2)=X1Y2+X2Y1

2个3维向量叉乘出来的结果是一个2维向量,大学数学里面是应用行列式值来计算的,电脑不好打,看看高等数学课本就明白了,谢谢

网站首页 | 网站地图
All rights reserved Powered by www.gpfd.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com